
LambdaCube 3D

purely functional API for GPU graphics
http://lambdacube3d.com

Csaba Hruska

http://lambdacube3d.com


Better graphics programming
Goals

● Less errors
● More code reuse
● Keep efficiency

Ideas

● Declarative description
Dataflow based graphics pipeline model

● Compile time validation
Use clever type system to check API constraints

Automate the engine coder’s work as much as possible.



Imperative GPU graphics programming



Dataflow Model = Functional Programming
Treat the GPU configuration state as a parameter for each draw command

Collect the relevant OpenGL state parts that has effect on draw operations e.g.
● used vertex and fragment shader
● configuration for rasterization (Rasterization context)
● configuration for pixel processing (Accumulation context)



Example: Texture mapping pipeline



LambdaCube 3D

frontend: lambdacube-compiler

backends:
● lambdacube-gl (Haskell, Desktop)
● purescript-lambdacube-webgl (PureScript, Web)
● android-gles20 (Java, Android, experimental)
● ios-gles20 (C++, iOS, experimental)

http://lambdacube3d.com/

LambdaCube 3D is Haskell-like purely functional domain specific language for programming the GPU.

http://lambdacube3d.com/


LambdaCube 3D

● Dataflow based declarative description
● Compile-time validation of GPU API constraints via types
● Better code reuse via function composition

http://lambdacube3d.com/

Purely functional GPU graphics API

http://lambdacube3d.com/

