
Optimizing Linear Algebraic Operations
for Improved Data-Locality

8th Wigner GPU Day

21 June 2018.

Dániel Berényi

Wigner Research Centre for Physics

András Leitereg, Gábor Lehel

Eötvös Lóránd University

Wigner Research Centre for Physics, Budapest

• GPU Laboratory

• Developer support

What we face day to day:

Domain experts, who have no programming
or hardware expertise

Who need to develop efficient computations,
but have no time to delve into hardware details
and programming interfaces

The result:
Lots of code written by non-experts,
that could utilize the hardware better

2

Hardware hierarchies

Computing center

Clusters of computers

Multiple devices (CPU, GPU, FPGA)

Multiple execution units

Groups of threads

3

Memory hierarchies

Storage

Device memory

Caches

Shared memory

Registers

RAM VRAM

Cache

Reg

Cache

Loc

Reg

Disk

Cache

Reg Reg Reg

VRAM

Cache

Loc Loc Loc

Reg

Reg

Reg

Reg

Reg

Reg

Reg

SizeSpeed

4

Specific example: linear algebra
The heart of simulations, neural networks, modeling and much more…
It must be very efficient!

Hand tuned libraries exists:
• BLAS – fixed primitives, not composable

C++ template libraries:
• Eigen, Armadillo – too specialized on matrices and vectors,

what if we need some little extension?
e.g. general tensor contractions?

5

EigenArmadilloBoost

Specific example: linear algebra

Can we get more flexible, yet well optimizable primitives?

• That cover existing features of linear algebra and more

• Have primitives that are expressive, yet composable

• Automatic tools can be constructed to optimize them

6

Higher order function primitives

On arrays we may consider the usual primitives:

map :: (a → b) → f a → f b

zip :: (a → b → c) → f a → f b → f c

reduce :: (a → a → a) → f a → a

And lets have functions (lambdas) and composition

7

Higher order function primitives

What happens when we try to compose them?

map f ∘ map g = map (f ∘ g)

map f ∘ zip g = ???

Well, it seems like we are not closed…

8

Higher order function primitives

What is the way out? Generalize to n-ary arguments:

nzip :: (𝑎1 → 𝑎2 → … → 𝑏) → (𝑓 𝑎1) → (𝑓 𝑎2) → … → 𝑓 𝑏

reducezip ::

(𝑏 → 𝑏 → 𝑏) → (𝑎1 → 𝑎2 → …→ 𝑏) → (𝑓 𝑎1) → (𝑓 𝑎2) → … → 𝑏

nzip is closed under compositions

We can also compose arbitrary nzips before the reduce:

9

Higher order function primitives
How can we optimize them?

• Fusion rules (like the composition before)

• Subdivision rules

• Exchange rules, like the following:

10

map (\y →
map (\x → f x y) X) Y

map (\x →
map (\y → f x y) Y) X

map (\r →
reducezip (+) (∗) r u) A

reducezip (zip (+)) (\c v →
map (\e → e∗v) c) (flip A) V

=

=

≅
map f A ≅ map (\b→ map f b) (subdiv A)

Higher order function primitives

Important example: matrix-vector product

11
Same result, but different performance!

6 rearrangements of the matrix-vector multiplication
at 1 level of subdivision

12

Rearrangements of the matrix-matrix multiplication

HoF ordering Time [ms]

mapA reducezip mapB 450

reducezip mapA mapB 1410

mapA mapB reducezip 4670

mapB mapA reducezip 6050

reducezip mapB mapA 13 800

mapB reducezip mapA 15 600

What is the performance difference if we reorder?

map (\𝑟𝐴 →
map (\𝑐𝐵 →

reducezip (+) (∗) 𝑟𝐴 𝑐𝐵) B) A

naive

13

What have we gained?

• If a naive algorithm is given
(higher-order function expression)

• We can automatically generate
different subdivisions and reorderings

• Even if we don’t know the hardware details, we can
benchmark them and select the best candidates

≈5 sec

n! candidates

180 ms

Suitable for computations running
for CPU/GPU months/years!

14

What is in the background?

We have constructed and proven the optimization patterns
for the higher-order functions shown earlier.

We generate C++ code for CPUs and GPUs (using SYCL and ComputeCPP)
15

We built a compiler in Haskell
using only structured recursion schemes
Optimization is based on pattern-find-and-replace

Future

• We investigated only 1 level of the hierarchy, but it is self-similar

• A cost model based heuristic would scale better
than the brute-force n! evaluation

• The operations should be extended to include sliding-window
computations (like convolution)

16

More about the project

The LambdaGen project

https://github.com/leanil/LambdaGen

https://github.com/leanil/DataView

Related publication:
D. Berényi, A. Leitereg, G. Lehel

Towards scalable pattern-based optimization for dense linear algebra

Will appear in: Concurrency and Computation: Practice and Experience

arXiv 1805.04319

17

This research was supported by:

NKFIH No. K120660 and K123815

A. L. is supported by the UNKP-17-2
New National Excellence Program of

the Ministry of Human Capacities

https://github.com/leanil/LambdaGen
https://github.com/leanil/DataView
https://arxiv.org/abs/1805.04319

Backup slides

18

Multidimensional tensors
• We can nest 1 dimensional arrays,

but can they represent multidimensional and subdivided tensors?

• We can add strides at type level

• We created a C++ View class to handle multi dimensional and strided data

• 𝑎 120

• 𝑎 15)(8

• 𝑎 3 (2)(5)(4)

• 𝑎 3, 𝟏 2, 𝟏𝟓 (5, 𝟑)(4, 𝟑𝟎)

19

The LambdaGen EDSL

reduce

(lam x (lam y (add x y)))

(zip

(lam x (lam y (mul x y)))

u

v)

20

The generated code
auto evaluator(std::map<std::string, double*> bigVectors){

View<double> s2147482884;

View<double,Pair<3,1>> s483997720;

Zip(

[&](const auto& x){return

[&](const auto& y){return

[&](auto& result){result=x*y;};};},

View<double,Pair<3,1>>(bigVectors.at("u")),

View<double,Pair<3,1>>(bigVectors.at("v")),

s483997720);

Reduce(

[&](const auto& x){return

[&](const auto& y){return

[&](auto& result){result=x+y;};};},

s483997720,

s2147482884);

return s2147482884;

}
21

