

Optimizing Linear Algebraic Operations for Improved Data-Locality

8th Wigner GPU Day

21 June 2018.

Dániel Berényi

Wigner Research Centre for Physics

András Leitereg, Gábor Lehel

Eötvös Lóránd University

Wigner Research Centre for Physics, Budapest

- GPU Laboratory
- Developer support

What we face day to day:

Domain experts, who have no programming or hardware expertise

Who need to develop efficient computations, but have no time to delve into hardware details and programming interfaces

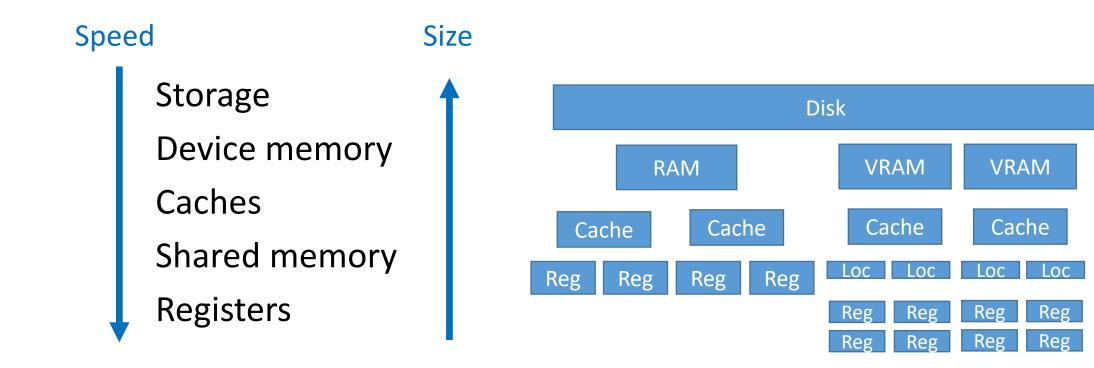
The result:

Lots of code written by non-experts, that could utilize the hardware better

Hardware hierarchies

Computing center Clusters of computers Multiple devices (CPU, GPU, FPGA) Multiple execution units Groups of threads

Memory hierarchies



Specific example: linear algebra

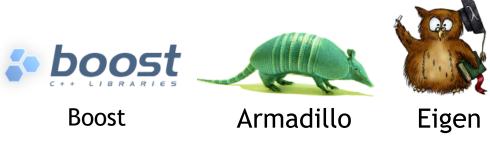
The heart of simulations, neural networks, modeling and much more... It must be very efficient!

Hand tuned libraries exists:

• BLAS – fixed primitives, not composable

C++ template libraries:

 Eigen, Armadillo – too specialized on matrices and vectors, what if we need some little extension?
 e.g. general tensor contractions?



Specific example: linear algebra

Can we get more flexible, yet well optimizable primitives?

- That cover existing features of linear algebra and more
- Have primitives that are expressive, yet composable
- Automatic tools can be constructed to optimize them

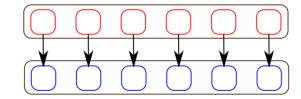
On arrays we may consider the usual primitives:

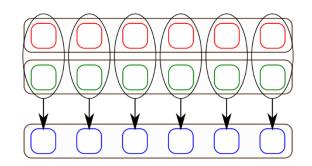
map ::
$$(a \rightarrow b) \rightarrow f a \rightarrow f b$$

zip :: $(a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f$

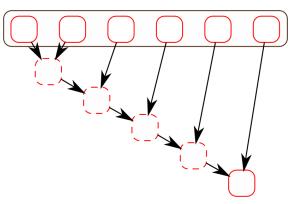
reduce ::
$$(a \rightarrow a \rightarrow a) \rightarrow + a \rightarrow a$$

And lets have functions (lambdas) and composition





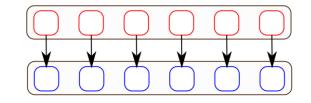
7

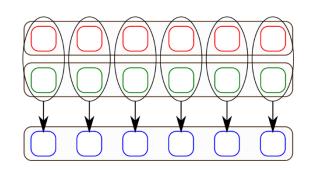


С

What happens when we try to compose them?

map
$$f \circ map g = map (f \circ g)$$





Well, it seems like we are not closed...

What is the way out? Generalize to n-ary arguments:

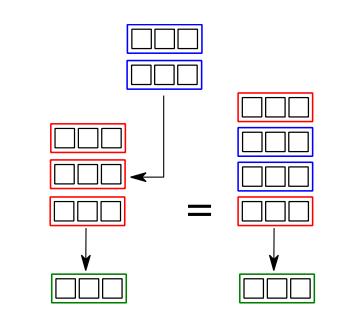
nzip is closed under compositions

$$\texttt{nzip} :: (a_1 \rightarrow a_2 \rightarrow \dots \rightarrow b) \rightarrow (f a_1) \rightarrow (f a_2) \rightarrow \dots \rightarrow f b$$

We can also compose arbitrary nzips before the reduce:

reducezip ::

$$(b \rightarrow b \rightarrow b) \rightarrow (a_1 \rightarrow a_2 \rightarrow \dots \rightarrow b) \rightarrow (f a_1) \rightarrow (f a_2) \rightarrow \dots \rightarrow b$$



How can we optimize them?

- Fusion rules (like the composition before)
- Subdivision rules

$$\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \cong \blacksquare \blacksquare \blacksquare \blacksquare$$

$$map f A \cong map (\b \rightarrow map f b) (subdiv A)$$

• Exchange rules, like the following:

map (\y \rightarrow map (\x \rightarrow f x y) X) Y

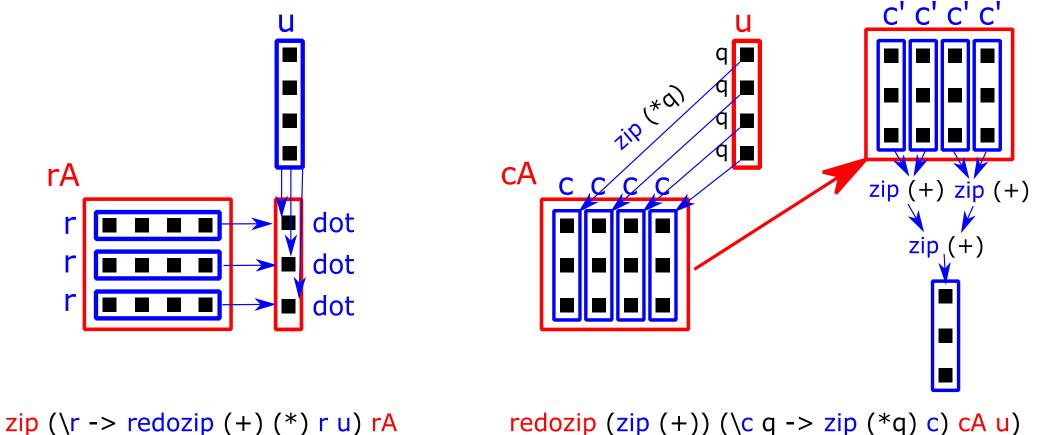
map (\r →
 reducezip (+) (*) r u) A

map (
$$\x \rightarrow$$

map ($\y \rightarrow f x y$) Y) X

reducezip (zip (+)) (\c v \rightarrow map (\e \rightarrow e*v) c) (flip A) V

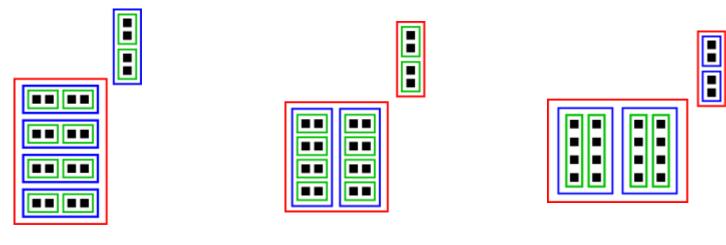
Important example: matrix-vector product

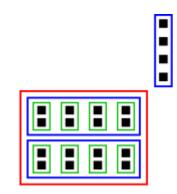


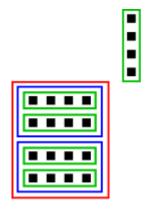
redozip $(zip (+)) (\langle c q - \rangle zip (*q) c) cA u)$

Same result, but different performance!

6 rearrangements of the matrix-vector multiplication at 1 level of subdivision







Rearrangements of the matrix-matrix multiplication

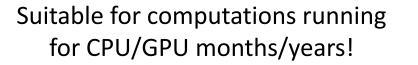
map $(\backslash r_A \rightarrow map (\backslash c_B \rightarrow reducezip (+) (*) r_A c_B) B) A$

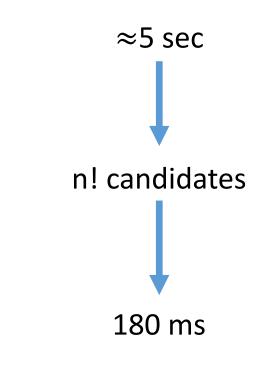
What is the performance difference if we reorder?

	HoF ordering			Time [ms]
naive	mapA	reducezip	mapB	450
	reducezip	mapA	mapB	1410
	mapA	mapB	reducezip	4670
	mapB	mapA	reducezip	6050
	reducezip	mapB	mapA	13 800
	mapB	reducezip	mapA	15 600

What have we gained?

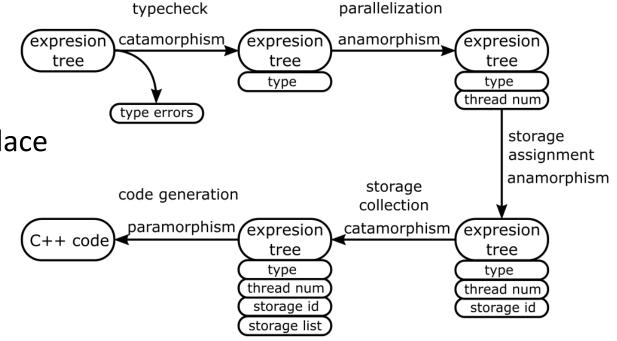
- If a naive algorithm is given (higher-order function expression)
- We can *automatically* generate different subdivisions and reorderings
- Even if we don't know the hardware details, we can benchmark them and select the best candidates





What is in the background?

We built a compiler in Haskell using only structured recursion schemes Optimization is based on pattern-find-and-replace



We have constructed and *proven* the optimization patterns for the higher-order functions shown earlier.

ComputeCpp[™]

We generate C++ code for CPUs and GPUs (using SYCL and ComputeCPP)

Future

- We investigated only 1 level of the hierarchy, but it is self-similar
- A cost model based heuristic would scale better than the brute-force n! evaluation
- The operations should be extended to include sliding-window computations (like convolution)

More about the project

The LambdaGen project <u>https://github.com/leanil/LambdaGen</u> <u>https://github.com/leanil/DataView</u>

Related publication:

D. Berényi, A. Leitereg, G. Lehel

Towards scalable pattern-based optimization for dense linear algebra

Will appear in: Concurrency and Computation: Practice and Experience

arXiv 1805.04319

This research was supported by:

NKFIH No. K120660 and K123815

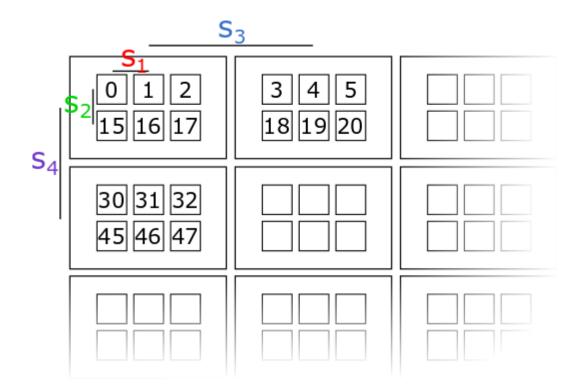
A. L. is supported by the UNKP-17-2 New National Excellence Program of the Ministry of Human Capacities

Backup slides

Multidimensional tensors

- We can nest 1 dimensional arrays, but can they represent multidimensional <u>and</u> subdivided tensors?
- We can add strides at type level
- We created a C++ View class to handle multi dimensional and strided data

- a⁽¹²⁰⁾
- a⁽¹⁵⁾⁽⁸⁾
- $a^{(3)(2)(5)(4)}$
- $a^{(3,1)(2,15)(5,3)(4,30)}$



The LambdaGen EDSL

reduce

```
(lam x (lam y (add x y)))
(zip
      (lam x (lam y (mul x y)))
      u
      v)
```

The generated code

}

```
auto evaluator(std::map<std::string, double*> bigVectors){
    View<double> s2147482884;
    View<double,Pair<3,1>> s483997720;
    Zip(
        [&](const auto& x){return
            [&](const auto& y){return
                [&](auto& result){result=x*y;};};
        View<double,Pair<3,1>>(bigVectors.at("u")),
        View<double,Pair<3,1>>(bigVectors.at("v")),
        s483997720);
    Reduce(
        [&](const auto& x){return
            [&](const auto& y){return
                [&](auto& result){result=x+y;};};
        s483997720,
        s2147482884);
    return s2147482884;
```