
OP2-Clang: A source-to-source translator using
Clang/LLVM LibTooling

Gábor Dániel Balogh, Dr. Gihan Mudalige, Dr. István Reguly

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

June 21, 2018

op2-clang June 21, 2018 1 / 18

Outline

Outline

Motivation

Unstructured grids

OP2
Abstraction
API

Source-to-source transformation with clang

OP2-Clang and Skeletons

Performance results

op2-clang June 21, 2018 2 / 18

Motivation

Future proofing parallel HPC applications

Hardware is rapidly changing with ambitions to overcome exascale
challenges

There is considerable uncertainty about which platform to target
Not clear which architectural approach is likely to “win” in the
long-term
Not even clear in the short-term which platform is best for each
application

Increasingly complex programming skills set needed to extract best
performance for your workload on the newest architectures.

Need a lot of platform specific knowledge
Cannot be re-coding applications for each “new” type of architecture or
parallel system.

op2-clang June 21, 2018 3 / 18

Motivation

One approach to develop future proof HPC applications is the use of
domain specific high-level abstractions (HLAs)

Provide the application developer with a
domain specific abstraction

To declare the problem to be computed
Without specifying its implementation
Use domain specific constructs in the
declaration

Create a lower implementation level
To apply automated techniques for translating
the specification to different implementations
Target different hardware and software
platforms
Exploit domain knowledge for better
optimisations on each hardware system

op2-clang June 21, 2018 4 / 18

Unstructured grids

Unstructured grids

A collection of nodes, edges, etc., with
explicit connections - e.g. mapping
tables define connections from edges to
nodes
Harder to parallelize due to connections
and dependencies
Hard to avoid race conditions
PDEs can be easily mapped to algorithms on unstructured meshes
For many interesting cases, unstructured meshes are the only tool
capable of delivering correct results

op2-clang June 21, 2018 5 / 18

OP2 abstraction

OP2

Open Source project

OP2 based on OPlus (Oxford Parallel Library for Unstructured
Solvers), developed for CFD codes on distributed memory clusters

Support application codes written in C++ or FORTRAN

Looks like a conventional library, but uses code transformations
(source to source translator) to generate parallel codes

op2-clang June 21, 2018 6 / 18

OP2 abstraction

OP2 Abstraction

Sets (e.g. nodes, edges, faces)
Datasets on sets (e.g. flow variables)
Mappings (e.g. from edges to nodes)

Parallel loops
Operate over all members of one set
Datasets accessed at most one level of indirection
User specifies how data is used (e.g. Read-only, write-only, increment,
read/write)

Restrictions
Set elements can be processed in any order, doesn’t affect results
within machine precision
Static sets and mappings (no dynamic grid adaptation)

op2-clang June 21, 2018 7 / 18

OP2 abstraction Generating platform specific executables

op2-clang June 21, 2018 8 / 18

OP2 abstraction Example

OP2 loop over edges

void res(double * edge ,
double * cell0 ,
double * cell1){

*cell0 += *edge;
*cell1 += *edge;

}

op_par_loop (res ," residual_calculation ", edges ,
op_arg (dedges , -1, OP ID, 1, " double ", OP READ,
op_arg (dcells , 0, pecell , 1, " double ", OP_INC),
op_arg (dcells , 1, pecell , 1, " double ", OP_INC));

op2-clang June 21, 2018 9 / 18

OP2-Clang

Clang LibTooling for code generation

Gives direct support for source-to-source transformations
(Tooling/Refactoring)

Nice and robust abstraction for local changes in the source code
Search in the AST for interesting bits of code with the ASTMatchers
interface
Based on the location of the match create patches to the source code

Hard to handle significant structural transformations

The code transformation divided to two steps:
Collecting data and modifying the user given OP2 application files
Generating target specific implementations for the computational
loops

Target specific implementations are significantly different from the user
functions

op2-clang June 21, 2018 10 / 18

OP2-Clang

The generated code for different loops are very similar in OP2
A lot of static code in the generated loop
We need local changes only to transform a skeleton application to
perform the given operation
void skeleton(double d) {}

void op_par_loop_skeleton(char const *name, op_set set,
 op_arg arg0) {

 int nargs = 1; op_arg args[1] = {arg0};
 int exec_size = op_mpi_halo_exchanges(set, nargs, args);

 for (int n = 0; n < exec_size; n++){
 if (n == set->core_size) op_mpi_wait_all(nargs, args);

 int map0idx = arg0.map_data[n * arg0.map->dim + 0];

 skeleton(&((double *)arg0.data)[2 * map0idx]);
 }
}

Number of
arguments

Static
code

Prepare
indirect
accesses

Set up
pointers,
call kernel

Kernel
function

op2-clang June 21, 2018 11 / 18

OP2-Clang

Generated code for the example loop

void res(double* edge,double* cell0,double* cell1) {
*cell0 += *edge; *cell1 += *edge; }

void op_par_loop_res(char const *name, op_set set,
 op_arg arg0, op_arg arg1,

op_arg arg2) {

 int nargs = 3; op_arg args[3] = {arg0, arg1, arg2};
 int exec_size = op_mpi_halo_exchanges(set, nargs, args);

 for (int n = 0; n < exec_size; n++){
 if (n == set->core_size) op_mpi_wait_all(nargs, args);

 int map0idx = arg0.map_data[n * arg0.map->dim + 0];
 int map1idx = arg0.map_data[n * arg0.map->dim + 1];

res(&((double *)arg0.data),
&((double *)arg1.data)[2 * map0idx],
&((double *)arg1.data)[2 * map1idx]);

 }
 // …
}

Number of
arguments

Static
code

Prepare
indirect
accesses

Set up
pointers,
call kernel

Kernel
function

Static
code

op2-clang June 21, 2018 12 / 18

OP2-Clang

The base of the transformation - ASTMatchers
void op_par_loop_skeleton(...) {
 // …
 for (int n = 0; n < exec_size; n++){
 // …

skeleton(
 &((double*)arg0.data)[2*map0idx]);

 }
 // …
}

void op_par_loop_skeleton(...) {
 // …
 for (int n = 0; n < exec_size; n++){
 // …
 res(&((double *)arg0.data),
 &((double *)arg1.data)[2 * map0idx],
 &((double *)arg1.data)[2 * map1idx]);
 }
 // …
}

callExpr(callee(functionDecl(
 hasname(”skeleton”))))
 .bind(”function_call”);

Generating replacement for
key ”function_call”

op2-clang June 21, 2018 13 / 18

OP2-Clang

Kernel generation process using skeletons

op2-clang June 21, 2018 14 / 18

OP2-Clang

Advantages of the skeleton approach

Easy to extend with new target
Writing the skeleton is similar to write a simple loop
Matchers and callbacks can be reused

More robust code generation
We search in the AST the static part is checked
The only source of errors are the generated parts

op2-clang June 21, 2018 15 / 18

Performance OP2

Airfoil and Volna

Airfoil
Non-linear 2D inviscid airfoil code
Five kernels with different access patterns:

save soln - simple kernel, only direct reads and writes
adt calc - computationally expensive operations, indirect reads, direct
increments
res calc - complex computation, indirect reads and indirect increments
bres calc - similar to res calc but on the boundary edges
update - simple computation with a global reduction, only direct reads
and writes

Volna
Shallow water simulation capable of handling the complete life-cycle of
a tsunami
Most time consuming kernels:

SpaceDiscretization - indirect reads and increments
NumericalFluxes - indirect reads and global reduction
computeFluxes - indirect reads

op2-clang June 21, 2018 16 / 18

Performance OP2

Airfoil and Volna performance

Speedup with
Vectorization vs

Sequential

Speedup with
OpenMP (with 16

cores) vs
Sequential

Speedup with
CUDA (P100) vs

OpenMP

Airfoil 2.08 10.33 4.28
Volna 2.34 12.9 3.46

op2-clang June 21, 2018 17 / 18

Summary

Summary

OP2 abstraction facilitate the development of application for parallel
execution
Nearly optimal performance

but the optimization is done automatically, not by the developer

OP2-Clang generates multiple parallelized implementations for
applications

OpenMP, Vectorized, CUDA
With the introduction of parallelization skeletons the transformations
became simple local transformations.

The code generation much simpler and robust
Easy to add new parallelizations, optimizations with adding new
skeletons

op2-clang June 21, 2018 18 / 18

	Outline
	Motivation
	Unstructured grids
	OP2 abstraction
	Generating platform specific executables
	Example

	OP2-Clang
	Performance
	OP2

	Summary

