
High-level .NET Software 
Implementations of the Unum Type I 

and Posit Floating-Point Number Types 
with Simultaneous FPGA 

Implementation Using Hastlayer
Zoltán Lehóczky, Álmos Szabó @ Lombiq

GPU Day 21 June 2018



2



3



Warning

Hastlayer is currently in alpha stage and posit work is ongoing!

4



Introducing Hastlayer

5



computer program → hardware (FPGA) logic

6



FPGAs (Field-Programmable Gate Array)

• Can behave like any other chip (with limitations)

• Can dynamically be „re-wired”

• Power efficient and highly parallelized

7

Image by SparkFun Electronics, Boulder, USA



.NET (C#, VB, C++, F#, Python, PHP, JavaScript…) → FPGA logic

8



The benefits of FPGAs for software developers

• Performance increase for parallel compute-bound algorithms

• Higher power efficiency

• Still only software development

9



Demo: Hands-on Hastlayer

10



Next-Generation Arithmetics

11



Problems with IEEE floats

 Wasteful – over 16 million bit patterns mean NaN

 Special cases require complex logic

 Value distribution is not very user-friendly

 Different results on different computers

12



Source: posithub.org 13

How does a posit look like?



Source: posithub.org 14

How does a posit look like?



Source: posithub.org 15

How does a posit look like?



How does a posit look like?

Source: posithub.org 16



Source: posithub.org 17

How does a posit look like?

= 0.00000355392



Posit construction

Source: posithub.org 18



Posit construction

Source: posithub.org 19



Distribution of values – posits vs floats

Source: posithub.org
20



The Quire 

 An internal scratchpad for computations required by 
the standard

 Rounding can be deferred to the last step after 
multiple operations

 Makes results consistent

21



Posit positives

• Fewer bits to store the same information
• Also affects energy efficiency

• Each value uses the same logic  simpler hardware

• Consistent results across platforms

22



Valids – interval arithmetic

Source: posithub.org 23



Valids – interval arithmetic

Source: posithub.org 24



Where can I get it and use it?

 FOSS implementations in multiple languages

 .NET C# implementation by Lombiq

 Transformed to FPGA using Hastlayer

25



Our posit implementation based on built-in 
.NET types

 32-bit version based on unsigned integers

 Addition, subtraction, multiplication

 Quire

 Fused operations

26



27

CPU FPGA

32bit posit 13 ms 203 ms

 CPU: 7.69 MPOPS

 FPGA: 0.49 MPOPS

100 000 additions

Performance measurements I.



28

CPU FPGA

32bit posit 416 203

Clock cycles per addition

Performance measurements I.



29

CPU FPGA

32bit posit 25 ms 203 ms

 CPU: 23.8 MPOPS

 FPGA: 2.46 MPOPS

500 000 additions in parallel (5 threads)

Parallelized performance I.



30

CPU
FPGA

32bit posit 160 40.6

Clock cycles per addition

Parallelized performance II.



Next steps

• More operations (division, exponentiation, trigonometric functions, 
fused operations, etc.)

• 8, 16, 64 bit versions with code generation

• Valids

31



Demo: 32-bit posits in action

32



Thank you for your attention!

• crew@hastlayer.com 

• https://hastlayer.com

• https://hastlayer.com/arithmetics

• https://github.com/Lombiq/Hastlayer-SDK

• https://posithub.org

33


