
High-level .NET Software
Implementations of the Unum Type I

and Posit Floating-Point Number Types
with Simultaneous FPGA

Implementation Using Hastlayer
Zoltán Lehóczky, Álmos Szabó @ Lombiq

GPU Day 21 June 2018

2

3

Warning

Hastlayer is currently in alpha stage and posit work is ongoing!

4

Introducing Hastlayer

5

computer program → hardware (FPGA) logic

6

FPGAs (Field-Programmable Gate Array)

• Can behave like any other chip (with limitations)

• Can dynamically be „re-wired”

• Power efficient and highly parallelized

7

Image by SparkFun Electronics, Boulder, USA

.NET (C#, VB, C++, F#, Python, PHP, JavaScript…) → FPGA logic

8

The benefits of FPGAs for software developers

• Performance increase for parallel compute-bound algorithms

• Higher power efficiency

• Still only software development

9

Demo: Hands-on Hastlayer

10

Next-Generation Arithmetics

11

Problems with IEEE floats

 Wasteful – over 16 million bit patterns mean NaN

 Special cases require complex logic

 Value distribution is not very user-friendly

 Different results on different computers

12

Source: posithub.org 13

How does a posit look like?

Source: posithub.org 14

How does a posit look like?

Source: posithub.org 15

How does a posit look like?

How does a posit look like?

Source: posithub.org 16

Source: posithub.org 17

How does a posit look like?

= 0.00000355392

Posit construction

Source: posithub.org 18

Posit construction

Source: posithub.org 19

Distribution of values – posits vs floats

Source: posithub.org
20

The Quire

 An internal scratchpad for computations required by
the standard

 Rounding can be deferred to the last step after
multiple operations

 Makes results consistent

21

Posit positives

• Fewer bits to store the same information
• Also affects energy efficiency

• Each value uses the same logic simpler hardware

• Consistent results across platforms

22

Valids – interval arithmetic

Source: posithub.org 23

Valids – interval arithmetic

Source: posithub.org 24

Where can I get it and use it?

 FOSS implementations in multiple languages

 .NET C# implementation by Lombiq

 Transformed to FPGA using Hastlayer

25

Our posit implementation based on built-in
.NET types

 32-bit version based on unsigned integers

 Addition, subtraction, multiplication

 Quire

 Fused operations

26

27

CPU FPGA

32bit posit 13 ms 203 ms

 CPU: 7.69 MPOPS

 FPGA: 0.49 MPOPS

100 000 additions

Performance measurements I.

28

CPU FPGA

32bit posit 416 203

Clock cycles per addition

Performance measurements I.

29

CPU FPGA

32bit posit 25 ms 203 ms

 CPU: 23.8 MPOPS

 FPGA: 2.46 MPOPS

500 000 additions in parallel (5 threads)

Parallelized performance I.

30

CPU
FPGA

32bit posit 160 40.6

Clock cycles per addition

Parallelized performance II.

Next steps

• More operations (division, exponentiation, trigonometric functions,
fused operations, etc.)

• 8, 16, 64 bit versions with code generation

• Valids

31

Demo: 32-bit posits in action

32

Thank you for your attention!

• crew@hastlayer.com

• https://hastlayer.com

• https://hastlayer.com/arithmetics

• https://github.com/Lombiq/Hastlayer-SDK

• https://posithub.org

33

