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Warning

Hastlayer is currently in alpha stage and posit work is ongoing!

4



Introducing Hastlayer
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computer program → hardware (FPGA) logic
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FPGAs (Field-Programmable Gate Array)

• Can behave like any other chip (with limitations)

• Can dynamically be „re-wired”

• Power efficient and highly parallelized
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.NET (C#, VB, C++, F#, Python, PHP, JavaScript…) → FPGA logic
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The benefits of FPGAs for software developers

• Performance increase for parallel compute-bound algorithms

• Higher power efficiency

• Still only software development
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Demo: Hands-on Hastlayer
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Next-Generation Arithmetics
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Problems with IEEE floats

 Wasteful – over 16 million bit patterns mean NaN

 Special cases require complex logic

 Value distribution is not very user-friendly

 Different results on different computers
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Source: posithub.org 13

How does a posit look like?



Source: posithub.org 14

How does a posit look like?
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How does a posit look like?



How does a posit look like?
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Source: posithub.org 17

How does a posit look like?

= 0.00000355392



Posit construction
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Posit construction
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Distribution of values – posits vs floats

Source: posithub.org
20



The Quire 

 An internal scratchpad for computations required by 
the standard

 Rounding can be deferred to the last step after 
multiple operations

 Makes results consistent
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Posit positives

• Fewer bits to store the same information
• Also affects energy efficiency

• Each value uses the same logic  simpler hardware

• Consistent results across platforms
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Valids – interval arithmetic

Source: posithub.org 23



Valids – interval arithmetic
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Where can I get it and use it?

 FOSS implementations in multiple languages

 .NET C# implementation by Lombiq

 Transformed to FPGA using Hastlayer

25



Our posit implementation based on built-in 
.NET types

 32-bit version based on unsigned integers

 Addition, subtraction, multiplication

 Quire

 Fused operations
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CPU FPGA

32bit posit 13 ms 203 ms

 CPU: 7.69 MPOPS

 FPGA: 0.49 MPOPS

100 000 additions

Performance measurements I.
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CPU FPGA

32bit posit 416 203

Clock cycles per addition

Performance measurements I.
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CPU FPGA

32bit posit 25 ms 203 ms

 CPU: 23.8 MPOPS

 FPGA: 2.46 MPOPS

500 000 additions in parallel (5 threads)

Parallelized performance I.
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CPU
FPGA

32bit posit 160 40.6

Clock cycles per addition

Parallelized performance II.



Next steps

• More operations (division, exponentiation, trigonometric functions, 
fused operations, etc.)

• 8, 16, 64 bit versions with code generation

• Valids
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Demo: 32-bit posits in action
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Thank you for your attention!

• crew@hastlayer.com 

• https://hastlayer.com

• https://hastlayer.com/arithmetics

• https://github.com/Lombiq/Hastlayer-SDK

• https://posithub.org
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