Solving the Kuramoto Oscillator Model on
Random Graphs

Jeffrey Kelling,
Géza Odor, Sibylle Gemming

12th July 2019

(g P2]
ﬁ HELMHOLTZ

ZENTRUM DRESDEN
ROSSENDORF

. gy

Where am | from?

N
ﬁ HELMHOLTZ

ZENTRUM DRESDEN
ROSSENDORF

about me:

m outside of Dresden, Germany

m member of computational
science group

m background in statistical and
theoretical solid state physics

Jiirgen-M. Schulter http://dresden-1luftfoto.de

Page 1/20

http://dresden-luftfoto.de

- Content

Introduction
Implementation
Performance

Conclusion

Page 2/20

. gy

Introduction

Introduction

(g P 2® o]

Page 3/20

Jeffrey Kelling, Géza Odor,

.The Kuramoto Model S

m describes a network of coupled oscillators

m system of ordinary differential equations (ODEs)

%ﬁﬂ =wj+ D Ak sin [dk(t) — 5(t)]

k#j

= integration to study time-evolution

(g 2™ o]

- Using things that already exist

B boost::numeric::odeint odeint.com

m template library of ODE solvers
®m boost: :numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

(g P2 o

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

- Using things that already exist

B boost: :numeric::odeint odeint.com
m template library of ODE solvers
®m boost: :numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)
m VexCL

m library for offloading vector expressions via CUDA or OpenCL
m direct support for custom kernels

(g P2 o

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

- Using things that already exist

B boost::numeric::odeint odeint.com

m template library of ODE solvers
®m boost: :numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

m VexCL

m library for offloading vector expressions via CUDA or OpenCL
m direct support for custom kernels

m we use 4th order Runge-Kutta form odeint

= computing derivates reamins and is the most time-consuming part

(g P2 o

https:://odeint.com
https://developer.nvidia.com/thrust
https://github.com/ddemidov/vexcl

= \VexCL R

+ offloading vector expressions, which is what boost: : compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);

4 device *= device;

6 vex::copy(device, host);

= \VexCL

+ offloading vector expressions, which is what boost: : compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);

4 device *= device;

6 vex::copy(device, host);

— pseudo single-source: kernel compilation at runtime
— no custon function templates

= have to use custom kernel and inject string to get “template”

Jefirey Kelling, Géza Odor,

- Shape of the Network |

k)

m parallel implementations depend on network topology

(g e o

- Shape of the Network |

k)

m parallel implementations depend on network topology
m fully connected graph:
m N?-problem, vectorizable

(g e o

- Shape of the Network |

k)

m parallel implementations depend on network topology
m fully connected graph:

m N?-problem, vectorizable
m regular lattice / band matrix:

m stencil integration

(g e o]

- Shape of the Network 11

oot
qsaj() _/+ Z >\Jk Sln ¢k(t) (bj(t)]
k NN of j
m sparse, random graph
"‘.. .'.'.'

(g e o]

.Shape of the Network II

<9¢81(f) Wit Y Aesin [@r(t) = @y(t)]

k NN of j

m sparse, random graph
m requires explicit storage network topology
i.e. sparse representation, neighbor lists
m random neighbor sums

(g e o]

™ Shape of the Network 11

8@2(0 Wit Y Aesin [@r(t) = @y(t)]

k NN of j

m sparse, random graph
m requires explicit storage network topology
i.e. sparse representation, neighbor lists
m random neighbor sums
= techniques for SIMT vectorization by tuned operation and
memory ordering

(g e o]

. gy

Implementation

Implementation

(g 2™ o]

Page 9/20

Jeffrey Kelling, Géza Odor,

Recap: GPU Architecture

Grid

Block (0,0) ' Block (1,0) ' Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)

Page 10/20

m Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

m vector memory transactions
(> 64 byte)

(g P 2® o]

Recap: GPU Architecture

Grid

Block (0,0) ' Block (1,0) ' Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)

Page 10/20

m Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

m vector memory transactions
(> 64 byte)

m actually, the same goes for
CPU (SIMD + Cache-lines)
GPUs just have wider vectors

and more simultaneous multi
threading (SMT)

(g ™ o

Vectorization |

<'9<zg§t):wj+ ST Ajksin [gi(t) — (1))

k NN of j

m vectorizing over oscillators j
B sum over k too short on average (< 51),
too little parallelism
m avoid need for reduction

. gy

Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous

(g P2 o]

Page 12/20

. gy

Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous

m data in naive neighbor lists would lead to scattered memory access

(g P2 o]

Page 12/20

. gy

Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access
m data of remote site k is at random positions

(g P2 o]

. gy

Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access
m data of remote site k is at random positions

4+ no branches, vectorizable expression

(g P2 o]

Vectorization |l: Memory Locality

DO S s[4l - (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access

m data of remote site k is at random positions

4+ no branches, vectorizable expression

— no predictable data reuse within thread block:
shared memory of not useful, but caches may be

— low computational density, mostly streaming data

(g P2 o]

Vectorization |l: Memory Locality

DO S s[4l - (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access

m data of remote site k is at random positions

4+ no branches, vectorizable expression

— no predictable data reuse within thread block:
shared memory of not useful, but caches may be

— low computational density, mostly streaming data
= maximize memory locality of reads

= minimize load imbalances

(g e o]

- Memory Layout

Gaggf) =wi+ Y Acesin [gu(t) — ¢i(1)]

K NN of J HZDR

Page 13/20

— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

10 15t links 0

J=0 1 2 3 4 5 6 7 8 9

0¢;(t) _

I ST sin [gi(t) — (1))

kNN of HZDR

— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

7 2nd Jinks 10

10 15t links 0

0¢;(t) _

5 — Wit D sin [gi(t) - (1)

kNN of HZDR

— Memory Layout

#nodes ... with nt" links: prefix sum
array of n™ links
1 5t links 24
2 4™ links 22
5 3" links 17
7 2" Jinks 10
10 15t links 0
J=0 1 2 3 4 5 6 7 8 9
OO gt 3 s esin g6 — ()]

(g P2 o]

— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

1 5t links 24
2 4™ Jinks 22
5 3" links 17
7 2" Jinks 10
10 15t links 0

15t links 21 Jinks 3" Jinks 4th - fsth

(g 2™ o]

— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

1 5t links 24
2 4 Jinks 22
5 3™ links 17
7 2" Jinks 10
10 15 links 0

15t links 21 Jinks 3" Jinks 4th - fsth

(g 2™ o]

Performance

Performance

Page 14/20

Networks

long-tailed human brain connectome vs. random graph
106

T T T
Hm brain connectome

mmm random graph

10°

104

804113 nodes,
average degree 51

103

number of nodes

0 1,000 2,000 3,000
number of links per node

(g 2™ o]

Benchmarks

Page 16/20

seconds / integration step

447

4l 5 < Iubrain connectome |
U8 random graph

3.6
3.2 .
2.8 .
2.4 .

2 N
1.6 8
1.2 .
0.4 e 2 9o o |

’ o o o o

0 \

B e R &8 O
g® s + &° &
O &\‘\Q
+o OQQ

B Efriciency

O — iyt 3 nsinon(D) — (1)

k NN of j

m profile on tesla P100
m global load efficiency: ~ 47 %
saturating gross load bandwidth to ~ 70 %
m data requests dominant stall reason ~ 50 %

= remains memory-latency bound, due to random accesses to
neighbors

Conclusion

Conclusion

Page 18/20

Summary

m efficient inmplementation for integration on random graphs
~ 20x improved throughput over single CPU socket.

m easily adaptable to other models: we use it for 2nd order
Kuramoto, too

Summary

m efficient inmplementation for integration on random graphs
~ 20x improved throughput over single CPU socket.

m easily adaptable to other models: we use it for 2nd order
Kuramoto, too

m handle randomness on GPU by sorting data to maximise the
likelyhood of efficient memory acceess and load balance

(g ™ o]

. gy

Acknowledgments

Thank You.

(g 2™ o]

Page 20/20

	Where am I from?
	Content
	Introduction
	The Kuramoto Model
	Using things that already exist
	VexCL
	Shape of the Network I
	Shape of the Network II
	Implementation
	Recap: GPU Architecture
	Vectorization I
	Vectorization II: Memory Locality
	Memory Layout

	Performance
	Networks
	Benchmarks
	Efficiency

	Conclusion
	Summary
	Acknowledgments

