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.The Kuramoto Model S

m describes a network of coupled oscillators

m system of ordinary differential equations (ODEs)

%ﬁﬂ =wj+ D Ak sin [dk(t) — 5(t)]

k#j

= integration to study time-evolution
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- Using things that already exist

B boost::numeric::odeint odeint.com

m template library of ODE solvers
®m boost: :numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)
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- Using things that already exist

B boost::numeric::odeint odeint.com

m template library of ODE solvers
®m boost: :numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

m VexCL

m library for offloading vector expressions via CUDA or OpenCL
m direct support for custom kernels

m we use 4th order Runge-Kutta form odeint

= computing derivates reamins and is the most time-consuming part
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= \VexCL R

+ offloading vector expressions, which is what boost: : compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);

4 device *= device;

6 vex::copy(device, host);




= \VexCL

+ offloading vector expressions, which is what boost: : compute
relies on

1 std::vector<double> host(N, 2);
2 vex::vector<double> device(context, host);

4 device *= device;

6 vex::copy(device, host);

— pseudo single-source: kernel compilation at runtime
— no custon function templates

= have to use custom kernel and inject string to get “template”
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m parallel implementations depend on network topology
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- Shape of the Network |

k)

m parallel implementations depend on network topology
m fully connected graph:

m N?-problem, vectorizable
m regular lattice / band matrix:

m stencil integration
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- Shape of the Network 11

oot
qsaj( ) _/+ Z >\Jk Sln ¢k(t) (bj(t)]
k NN of j
m sparse, random graph
"‘.. .'.'.'
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.Shape of the Network II

<9¢81(f) Wit Y Aesin [@r(t) = @y(t)]

k NN of j

m sparse, random graph
m requires explicit storage network topology
i.e. sparse representation, neighbor lists
m random neighbor sums
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™ Shape of the Network 11

8@2(0 Wit Y Aesin [@r(t) = @y(t)]

k NN of j

m sparse, random graph
m requires explicit storage network topology
i.e. sparse representation, neighbor lists
m random neighbor sums
= techniques for SIMT vectorization by tuned operation and
memory ordering
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Recap: GPU Architecture

Grid

Block (0,0) ' Block (1,0) ' Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)
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m Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

m vector memory transactions
(> 64 byte)
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m Single-Instruction-Multiple-
Thread (SIMT) workers in
lock-step

m vector memory transactions
(> 64 byte)

m actually, the same goes for
CPU (SIMD + Cache-lines)
GPUs just have wider vectors

and more simultaneous multi
threading (SMT)
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Vectorization |

<'9<zg§t):wj+ ST Ajksin [gi(t) — (1))

k NN of j

m vectorizing over oscillators j
B sum over k too short on average (< 51),
too little parallelism
m avoid need for reduction
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Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous
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m data local to Js is continuous

m data in naive neighbor lists would lead to scattered memory access
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Vectorization |l: Memory Locality

OO b T s () — (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access
m data of remote site k is at random positions

4+ no branches, vectorizable expression
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Vectorization |l: Memory Locality

DO S s[4l - (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access

m data of remote site k is at random positions

4+ no branches, vectorizable expression

— no predictable data reuse within thread block:
shared memory of not useful, but caches may be

— low computational density, mostly streaming data
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Vectorization |l: Memory Locality

DO S s[4l - (1)

k NN of j

m data local to Js is continuous
m data in naive neighbor lists would lead to scattered memory access

m data of remote site k is at random positions

4+ no branches, vectorizable expression

— no predictable data reuse within thread block:
shared memory of not useful, but caches may be

— low computational density, mostly streaming data
= maximize memory locality of reads

= minimize load imbalances
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- Memory Layout

Gaggf) =wi+ Y Acesin [gu(t) — ¢i(1)]

K NN of J HZDR
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— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

10 15t links 0

J=0 1 2 3 4 5 6 7 8 9

0¢;(t) _

I ST sin [gi(t) — (1))

kNN of HZDR




— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

7 2nd Jinks 10

10 15t links 0

0¢;(t) _

5 — Wit D sin [gi(t) - (1)

kNN of HZDR




— Memory Layout

#nodes ... with nt" links: prefix sum
array of n™ links
1 5t links 24
2 4™ links 22
5 3" links 17
7 2" Jinks 10
10 15t links 0
J=0 1 2 3 4 5 6 7 8 9
OO gt 3 s esin g6 — ()]

(g P2 o]



— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

1 5t links 24
2 4™ Jinks 22
5 3" links 17
7 2" Jinks 10
10 15t links 0

15t links 21 Jinks 3" Jinks 4th - fsth
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— Memory Layout

#nodes ... with nt" links: prefix sum

array of n™ links

1 5t links 24
2 4 Jinks 22
5 3™ links 17
7 2" Jinks 10
10 15 links 0

15t links 21 Jinks 3" Jinks 4th - fsth

(g 2™ o]




Performance

Performance

Page 14/20




Networks

long-tailed human brain connectome vs. random graph
106

T T T
Hm brain connectome

mmm random graph

10°

104

804113 nodes,
average degree 51

103

number of nodes

0 1,000 2,000 3,000
number of links per node
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Benchmarks
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B Efriciency

O — iyt 3 nsinon(D) — (1)

k NN of j

m profile on tesla P100
m global load efficiency: ~ 47 %
saturating gross load bandwidth to ~ 70 %
m data requests dominant stall reason ~ 50 %

= remains memory-latency bound, due to random accesses to
neighbors
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Summary

m efficient inmplementation for integration on random graphs
~ 20x improved throughput over single CPU socket.

m easily adaptable to other models: we use it for 2nd order
Kuramoto, too




Summary

m efficient inmplementation for integration on random graphs
~ 20x improved throughput over single CPU socket.

m easily adaptable to other models: we use it for 2nd order
Kuramoto, too

m handle randomness on GPU by sorting data to maximise the
likelyhood of efficient memory acceess and load balance
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