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Motivation: gradient structures of feed-

foward networks are distinguishable
Feed-forward networks:

• DAG with activation functions 

• ordered disjoint layers

• usually continuously differentiable 

• trainable via back-propagation

• highly non-convex 

• there are cases where the 

local minimums are close to global

[Choromanska et al., 2015]

Gradient graph:

Nodes: parameters 

Edges: dependencies

Sparsity?

Example: Multi-layer perceptron 

with 256-128-64-32-10 neurons 

for CIFAR10



LIN, H. W., AND TEGMARK, M. Why does deep and cheap 

learning work so well? Journal of Statistical Physics, 2017

Hamiltonians are D<5 degree polynomials…

Why not poly networks?

Results indicate that for known hierarchical/compositions 

functions deep structures can be exponentially better than 

shallow models. 

Motivation: low degree poly structures 



Motivation: promising results over 

normalized gradients

Traditional method (AdaBoost) AUC Similarity Kernel AUC

Drop prediction in LTE data connection, transfer learning between eNodeBs1

[1] Bálint Daróczy, Péter Vaderna, and András Benczúr: “Machine learning based session drop prediction in lte networks and its son aspects.“ In Proceedings of IWSON at IEEE 

81st Vehicular Technology Conference VTC’15 Spring, Glasgow, Scotland 2015, 2015. 

[2] Domokos Kelen, Bálint Daróczy, Frederick Ayala-Gómez, Anna Ország, András Benczúr: “Session Recommendation via Recurrent Neural Networks over Fisher Embedding 

Vectors”, Sensors, under revision

Session based recommender via conditional Fisher information normalized gradient embedding2



Manifolds or point clouds in machine 

learning ? 

Data

Loss surface Hyperparameter surface 



It looks interesting :)

What about Neural Networks? Later…

What kind of surface is that?

Spoiler: differentiable manifold

Example: linear separator in 2D with binary 

labels



Manifolds

Manifolds are in a way surfaces 

“Objects with n degree of freedom”: 

The dimension of a manifold is the number of free (independent) 

parameters to specify a point on the manifold (not equal to the 

embedded dimension!).

Examples:

1. Curves embedded into 3D, x,y,z = f(t),g(t),h(t) for some 

continuous functions f,g,h

2. Surface of unit ball in R3 is a 2-dimensional manifold (unit sphere 

in n-dim: given a starting point the parametrization in the 

neighbourhood of the point is only n-1 dimensional)

3. Solid ball in R3 is a 3-dimensional manifold



Topological manifold
Topological manifold: topological space which locally resembles 

Euclidean (has a neighbourhood which is homeomorphic to Rn)

If the structure has some differential structure it is a differential 

manifold aka there exists some smooth function from element to 

element (point to point)

Connection: If the structure has some differential structure it is a 

differential manifold aka there exists some smooth function from 

element to element (point to point) on M

Riemann manifolds: Given a smooth (or differentiable) n-dimensional 

manifold M, a Riemannian metric g: TM x TM -> R on M (or TM) is a 

family of inner products (⟨•,•⟩p)p∈M  on each tangent space TpM, such 

that the inner product depends smoothly on p

A smooth manifold M, with a Riemannian metric (RM) is called a 

Riemannian manifold 



Manifolds or point clouds?

Data Loss Hyperparameter surface 

usually Not topological manifold! 

usually Diff. manifold! 

feed-forward NN is 

[Ollivier et al, 2015, 

Choromanska et al., 2015]

statistical manifolds

[Cencov, 1982, 

Campbell, 1986, Amari, 1996]

usually a set of topological 

manifolds but not diff.…



Manifolds or point clouds?

Data Loss Hyperparameter surface 

Augmentation [Khrizhevsky et al., 2012]? 

Regularization and Dropout [Hinton et al., 2012]?

Network structure?

usually Not topological manifold! usually Diff. manifold! usually a set of topological 

manifolds but not diff.…



Manifolds or point clouds?

Data Loss Hyperparameter surface 

Augmentation 

[Khrizhevsky et al., 2012]

Regularization 

and Dropout [Hinton et al., 2012]
Network structure

usually Not topological manifold! usually Diff. manifold! usually a set of topological 

manifolds but not diff.…



Manifolds or point clouds?

Generalization error 

(difference between the empirical loss and the expected loss)

[Vapnik & Chervonenkis, 1971, Maas, 1993, 

Sontag, 1994, Bartlett, 2001]

as a surface?

Approx: Difference between the loss on a validation set 

and the loss on the training set

Now let us focus on the loss… what metric? 



What metric? How to find paths on the 

surface?

• Simplest solution: first order GD…

• instead of exponential maps small steps 

• momentum: e.g. [Polyak,1964], Adam [Kingma&Ba, 2014], AdaGrad [Duchi et 

al., 2011], RMSProp [Tieleman&Hinton, 2012], Nesterov [Nesterov, 1983]

• Semi ideal metric:

• special metrics e.g. Fisher information 

[Cencov,1982, Campbell,1985, Jaakola&Haussler, 1998, Perronnin et al., 2010]

• learn a metric to preserve some properties of the inner product locally [D. et al, 

2018]

fig.: wikipedia



What metric? 

• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption of GradNet [1]: let the loss (f) be a parametric 

cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel, inverse!)

satisfies the Mercer's conditions  

• dot product approximation:

[1] Daróczy, B., Aleksziev, R., Benczúr, A. Sparse Hessian manifolds over feed-forward neural networks , under submission 



What metric? 

• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption: let the loss (f) be a parametric cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel)

satisfies the Mercer's conditions  

• dot product approximation:

Dimensions: 

• N = number of free parameters of the underlying model … 

• even ResNet50 has 25.2M parameters… 

• dim(gx) = N

• dim(H-1/2) = N^2 -> 

• ResNet50: in fp32 400+TB …

normalized gradient 

vector

Layer 1

Layer 2

Layer 3

Layer n

…

input

output

gx

H-1/2gx

simple feed-forward 

network

raw gradient vector 

per sample

hx



• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption: let the loss (f) be a parametric cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel)

satisfies the Mercer's conditions  

• dot product approximation:

H-1/2gx

Dimensions: 

• N = number of free parameters of the underlying 

model … 

• even ResNet50 has 25.2M parameters… 

• dim(gx) = N

• dim(H-1/2) = N^2 -> 

• ResNet50: in fp32 400+TB… 

Computational complexity: 

• gx : at every step we back-propagate per sample … existing frameworks (TF, Torch, Chainer 

etc.) are not suitable -> even if we have every value at some point in the GPU it will be slow 

over the frameworks due integrated aggregation

• H : 

• expected value (if we can store…) -> approximation via a validation set 

• inverse computation … -> diagonal approximation

or? 

hx

normalized 

gradient vector

What metric? 



• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption: let the loss (f) be a parametric cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel)

satisfies the Mercer's conditions  

• dot product approximation:

H-1/2gx

…

…

…

…

”important” parameters

Hypothesis: Sparse 

Hessian <-> sparsity and 

invariance inside the Deep 

NN

Identify flows -> sparse

gradient 

…

…

…

…

“surviving” paths 

Dimensions: 

• N = number of free parameters of the underlying 

model … 

• even ResNet50 has 25.2M parameters… 

• dim(gx) = N

• dim(H-1/2) = N^2 -> 

• ResNet50: in fp32 400+TB …

hx

normalized 

gradient vector

What metric? 



• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption: let the loss (f) be a parametric cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel)

satisfies the Mercer's conditions  

• dot product approximation:

Sparsification of the gradients:  

Hierarchical nature of feed-forward networks 

• Percentile rank per layer… on GPU? CuPy for Chainer

• Leave only a fraction of the gradient vectors per layer 

Experiments: 15% of the gradient is sufficient

Layer separation Percentile rank based 

sparsification

…

…

…

…

Simple DNN with 

three layers 

Gradient vector 

per sample

What metric? 



What metric? 

• Previously determined metric 

• second order gradients? 

• Hessian metric -> pos. def.? :( 

• exponential maps

• geodesic convexity

[Wensing et al., 2018, Sra et al., 2018]

• in case of loglikelihood 

• Fisher information and natural gradient: 

[Amari, 1996, Pascanu et al. 2014]

Presumption: let the loss (f) be a parametric cdf so that

• the Hessian exists:

• there is a RM where g is a quasi-arithmetic mean: 

• and the kernel (Hessian kernel)

satisfies the Mercer's conditions  

• dot product approximation:

Sparsification of the metric: 

• Block nature (with proper activations) of Hessian over feed-forward networks -> 

important blocks 

• dot product approximation and sparsification -> per sample the Hessian is highly 

sparse 

• finite approximation via validation set and highly sparse Hessians -> fraction of the 

metric we need to care about 

• inverse?

Hypothesis: the important blocks can be well approximated with low dimensional latent 

factors… -> multi-layer perceptron per layer 

…

…

…

…

Simple DNN with 

three layers 

Gradient vector 

per sample
“important” blocks of 

Hessian, but still TBs…

low rank approx…

memory: #layers x 

#factors :) 



Ok, what are the partial gradients of the 

loss of unknown labeled sample?
Gradient based on fixed target loss Gradient based on GT loss 

Gradient based on sup. loss 

Colors indicate ground truth class

Discriminative layer on test

Gradient representation:

what is the loss for a test sample? 

We do not know the original label… Sadly, the best solution is so 

far is the mean ….



GradNet: Experiments with a simple 3-layer CNN 

with 120k parameters on CIFAR and MNIST



Conclusions

• GPU  memory can be really a constrain even for simple problems

• Sometimes these constraints lead to interesting results (e.g. CIFAR-10 accuracy 0.828 vs. 

0.801 with and without sparsification)

• Differential geometry could play an important role in the future of ML [Hyland and Ratsch, 

2016, Wisdom et al., 2016, Ox et al., 2017]: 

• Pushforward, local diffeomorphisms (lower or higher dimensional, but a sparser tangent 

space): -> non trivial network structures? Ensemble of structures.

• Lie groups -> left/right/bi-invariant transformations

Thank you!


