Laboratory observation of water surface polygon vortices

Ádám Kadlecsik

GPU Day 2021

2021.11.10.

Outline of the presentation

I. Introduction

1. Newton's bucket

II. Reproduction of the phenomenon

- 1. Measurement setup
- 2. The phenomenon

III. Qualitative explanation

1. Hydrodynamic instability

IV. Relevant parameters

- 1. Relevant parameters
- 2. Phase diagram

V. Quantitative theory

- 1. Equation of motion
- 2. Pilot simulation
- 3. "Tilted world"
- 4. Water surface wave dispersion relation
- 5. Comparison

VI. Summary

I. Introduction

I.1. Newton's bucket – polygon vortex

*Only qualitative representation

From the laboratory frame

II. Reproduction of the phenomenon

II.1. Measurement setup

II.2. The phenomenon

II.2. The phenomenon

III. Qualitative explanation

III.1. Hydrodynamic instability

- What do we see?
 - Hydrodynamic instability

In our case:

• No different fluids, only relative velocity difference \rightarrow velocity shear (δ)

Kevin Schaal. ,,Kelvin-Helmholtz instability''. Youtube, 2012. Nov. 26., 1:20. https://www.youtube.com/watch?v=nuK9PvlpUNg

Kevin Schaal. "Kelvin-Helmholtz instability". Youtube, 2012. Nov. 26., 1:20. https://www.youtube.com/watch?v=nuK9PvlpUNg

III.1. Hydrodynamic instability

IV. Relevant parameters

IV.1. Relevant parameters

Relevant parameters	
Radius of the cylinder	R
Radius of the plate	R _p
Starting height of the water	H ₀
Frequency of the rotation	f
Density	ρ
Kinematic viscosity	ν
Height of water below the plate	

IV.2. Phase diagram

- Conclusions
 - Higher radius → we get polygon-vortices ,,sooner"
 - Higher water level \rightarrow lower *n*
 - Higher frequency \rightarrow higher n
 - Bottom and top limits

V. Quantitative theory

Navier-Stokes equation:

Equation of continuity

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

$$\operatorname{Re} = \frac{\omega R^2}{\nu}$$
$$100\ 000 \le \operatorname{Re} \le 10\ 000\ 000$$

V.2. Pilot simulations

- The calculation takes days to compute
- GPU lab of Wigner Research Centre of Physics
 - 48 CPU core; 760 GB RAM
 - 16 CPU core; 16 GB RAM

V.2. Pilot simulations

- Numerical simulations (Navier-Stokes)
 - Very complex:
 - Complex boundary conditions
 - Dynamic 3D system (very high time and spatial resolution needed)
 - Every single point on a phase diagram would need to be simulated
 - Even pilot simulations required days to calculate
 - Only a few articles touch this area (e.g.)
 - R. BERGMANN, L. TOPHØJ, T. A. M. HOMAN, P. HERSEN, A. ANDERSEN, & T. BOHR. 2011 Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679, 415–431.
 - L. TOPHØJ, J. MOUGEL, T. BOHR., D. FABRE. 2013 Rotating Polygon Instability of a Swirling Free Surface Flow. PRL. 110, 194502-1 - 194502-5.
- Generally with hydrodynamic instabilites the simulations are very complicated
 - Small perturbations grow immensely
 - Very detailed mesh required

From a co-rotating frame

$$g' = \sqrt{a_{\rm cf}^2 + g^2}$$

Polygon vortices:

Water surface waves on a tilted surface with an effective g'

V.4. Water surface wave dispersion relation

25

V.4. Water surface wave dispersion relation

V.5. Comparison

VI. Summary

VI. Summary

Polygon vortices

- Shear insatbility
- Similar to surface waves
- Modified water surface wave dispersion relation

•
$$f_{\text{wave}} = \sqrt{\frac{g'}{2\pi} \frac{1}{\lambda}} \tanh\left(2\pi \frac{h'}{\lambda}\right)$$

APPENDIX

30

References

- R. BERGMANN, L. TOPHØJ, T. A. M. HOMAN, P. HERSEN, A. ANDERSEN, & T. BOHR. 2011 Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679, 415–431.
- B.BACH, E. C.LINNARTZ, M. H. VESTED, A. ANDERSEN AND T. BOHR. 2014 From Newton's bucket to rotating polygons:experiments on surface instabilities inswirling flows. J. Fluid Mech. 386-403.
- G. H. VATISTAS. A classical flow instability and its connection to gaseous galactic disk hydrodynamics.
- JANSSON, THOMAS R. N.; HASPANG, MARTIN P.; JENSEN, KÅRE H.; HERSEN, PASCAL; BOHR, TOMAS. 2006 Polygons on a Rotating Fluid Surface. Physical Review Letters 96, 174502.
- J. M. LOPEZ, F. MARQUES, A. H. HIRSA AND R. MIRAGHAIE. 2004 Symmetry breaking in free-surface cylinder flows. J. Fluid Mech. 502, 99-126.
- Kevin Schaal. ,,Kelvin-Helmholtz instability". Youtube, 2012. Nov. 26., 1:20. https://www.youtube.com/watch?v=nuK9PvlpUNg

Kelvin-Helmholtz-instability example

$$\left|\frac{1}{T_{\text{pattern}}^{\text{lab}}} - \frac{1}{T_{\text{tank}}^{\text{lab}}}\right| = f_{\text{pattern}}^{\text{co-rot}}$$

$$f_{\text{pattern}}^{\text{co-rot}} \cdot n = f_{\text{wave}}$$

Wave number (2, 3 or 4)

System energy investigation

- Conclusions
 - Jump to a higher $n \rightarrow$ break in the line
 - The system is at a lower potential
 - There is a tendency, but not strong enough
 - Further investigations required

There are no stationary nodes, not even in a co-rotating frame