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What is mixed precision?

Floating point representation

IEEE-754 FP64 double, double precision
i

IEEE-754 FP32 float, single precision
1

IEEE-754 FP16 half, half precision

I
Signed bit
NVIDIA TF32
I
Google BFLOAT16
I
B. Siklési (PPCU — FIT) November 10, 2021

2/14



Why mixed precision?

Key challenges of exascale computing

In 2008 Exascale Study Group (ESG) issued a report: Technology Challenges in Achieving
Exascale Systems [8]
power consumption
600 MW - 20 MW
speed and energy of data movement
time of data movement > time of FLOP
fault tolerance
Failures happen faster, than checkpointing a job.

extreme parallelism
To compute at a rate of 1 exaflop requires 1 billion floating point units performing 1 billion
calculations per second each
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Wide interest in mixed precision

Gordon Bell Prize winner climate
simulation [9]
Less communication Gordon Bell Prize winner opioid addiction
Reduce memory traffic research [7]

Reduce network traffic Best paper at ISC'19 GPUMixer [10]

Reduce memory footprint Earthquake simulation [6]

More Flop per second Mixed . o 111
Reduced energy consumption ixe preCISIOT'I in-memory computing [11]
Reduced time to compute Al, Deep learning [13], [12]

Linear solvers, numerical methods [1], [2],

[4]
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Particle method

B. Siklési (PPCU — FIT)

Examples

Position: FP64
Displacement: FP32
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Machine learning [12]
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Figure: Mixed precision training iteration for a layer. Memory

consumption of deep learning models nearly halved.

B. Siklési (PPCU — FIT)

November 10, 2021

6/14



Examples

Linear solver in Ginkgol[3]

Linear system Ax=Db
Rule of thumb [5]:

relative residual accuracy = (unit round-off) [{linear system's condition number)
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Examples

Linear solver in Ginkgol[3]

Linear system Ax=b with cond(A)=4

Rule of thumb [5]:

relative residual accuracy = (unit round-off) [(Jinear system's condition number)

Relative residual norm
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Examples

Linear solver in Ginkgol[3]

Linear system Ax=b with cond(A)=4 16% runtime improvement
Rule of thumb [5]:

relative residual accuracy = (unit round-off) [{Jinear system’s condition number)

Linear System Ax=b with cond(A) = 10*
——CG in double precision
CG in single precision
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GPUMixer [10]
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Step 1: Arithmetic-to-Cast Operations Ratio = 1:3

Figure: lllustration of the algorithm to find Fast Imprecise Sets (FISets)
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GPUMixer [10]
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|R4_=add,R3_, 1.0}

| R4=extR4_

[R5 =DIV, R4, 2.0 |

Step 2: Arithmetic-to-Cast Operations Ratio = 2:3

|R6 = ADD, R4, R5 |

Figure: lllustration of the algorithm to find Fast Imprecise Sets (FlSets)
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