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1.1 Empirical Mode Decomposition
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N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary
time series analysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903-995, 1998



1.2 Features of EMD and its variants
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1.3 Processing pipeline of MEMD

Stop iterating

multidimensional space curve

|

—  Project along direction vectors

l

Generate the envelopes of the

projected signals
l |dentify extremes of each projected signals

Calculate mean envelope with T
multivariate envelopes Project along direction vectors

} i

Curve — IMF

[y

Multivariate
envelope

The number of extremes of
each projected signal < 3

Residue = curve — mean envelopes

Direction RN - .
Vector channel, 15 N - 7 ) 6 . R 5

Does Residue meet
IMF conditions?

MEMD process flowchart Envelopes of.pro.Jected signals and
the multivariate envelope



2.1 Numerical steps of MEMD

1. Use the data matrix to dot product the direct vector: 2. Detect the extreme points on the projection signal
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2.1 Numerical steps of MEMD

3. Find the corresponding multivariate extrema 4. Interpolate on the dimensions of multivariate extrema
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(Here we need to perform six interpolation operations)



2.1 Numerical steps of MEMD

5. Calculate multivariate mean envelope

Upper Lower Mean envelope from
envelope envelop direction vector_1
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2.2 Implementation details

Use CUDA shuffle operation to detect extrema
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2.2 Implementation details

Use prefix sum to get compact extrema vector
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2.2 Implementation details

Multi tridiagonal systems solver in interpolation
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2.3 Data layout in memory

To store raw signal and
multivariate IMF To store direction vectors To store projected signals To store IMFs result
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3.1 Performance overview

Dataset: EEGLAB sample dataset

Number of channels: 4

Number of direction vectors: 64 Number of IMFs: 8
Length of signal: 30504 Number of iteration: 10

Execution time (in log scale)

—~ 1000

©

(-

% 100

%) i Compared to CPU,
= Titan achieved 190X
o 1 RTX3070 achieved 55X
g speedup

- 01

O

3 001

)

x

L 0.001

TitanXP RTX3070Laptop i7-9700k (MATLAB)



3.2 Kernel performance compared to literature

Number of channels: 16
Number of direction vectors: 64 Number of IMFs: 8
Length of signal: 1001 Number of iteration: 10

Execution time (us)

Kernels Number of calls Literature [1] Our version Speedup
HammersleySegGen 1 11 3.42 3x
DirectionVecGen 1 148 64.64 2%
Projections 7 802 10.21 79x
PeaksDetection 70 1232 6.61 187x
BoundaryCondSet 140 3961 84.73 A7X
EnvelopeMean 140 152 28.34 5x

[1] Mujahid, T., Rahman, A. U., & Khan, M. M. (2017). GPU-Accelerated Multivariate Empirical
Mode Decomposition for Massive Neural Data Processing. /EEE Access, 5, 8691-8701.



4 Future works

1. There are still limitations in our performance tests, and in the
future, we will test more datasets including 128-channel
EEG signals under different execution parameters.

2. The effects of some detailed parameter settings on the
decomposition results still need to be further studied, such
as the settings of extrema and tridiagonal matrix boundary
conditions, and the setting of sifting stop criterion.

3. Some numerical validations are currently ongoing, and the
stream mechanism will be introduced Iinto MEDM
computations to further improve the parallelization and
performance.



